Rosenthal’s potential and a discrete version of the Debreu–Gorman Theorem
نویسنده
چکیده
The acyclicity of individual improvements in a generalized congestion game (where the sums of local utilities are replaced with arbitrary aggregation rules) can be established with a Rosenthalstyle construction if aggregation rules of all players are “quasi-separable.” Every universal separable ordering on a finite set can be represented as a combination of addition and lexicography. MSC2010 Classification: 91A10; Journal of Economic Literature Classification: C 72.
منابع مشابه
Rosenthal Inequalities in Noncommutative Symmetric Spaces
We give a direct proof of the ‘upper’ Khintchine inequality for a noncommutative symmetric (quasi-)Banach function space with nontrivial upper Boyd index. This settles an open question of C. Le Merdy and the fourth named author [24]. We apply this result to derive a version of Rosenthal’s theorem for sums of independent random variables in a noncommutative symmetric space. As a result we obtain...
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملROSENTHAL’S THEOREM FOR SUBSPACES OF NONCOMMUTATIVE Lp
We show that a reflexive subspace of the predual of a von Neumann algebra embeds into a noncommutative Lp space for some p > 1. This is a noncommutative version of Rosenthal’s result for commutative Lp spaces. Similarly for 1 ≤ q < 2, an infinite dimensional subspace X of a noncommutative Lq space either contains lq or embeds in Lp for some q < p < 2. The novelty in the noncommutative setting i...
متن کاملNew proofs of Rosenthal’s l–theorem and the Josefson–Nissenzweig theorem
We give elementary proofs of the theorems mentioned in the title. Our methods rely on a simple version of Ramsey theory and a martingale difference lemma. They also provide quantitative results: if a Banach space contains l only with a bad constant then every bounded sequence admits a subsequence which is “nearly” a weak Cauchy sequence.
متن کاملPositive solutions for discrete fractional initial value problem
In this paper, the existence and uniqueness of positive solutions for a class of nonlinear initial value problem for a finite fractional difference equation obtained by constructing the upper and lower control functions of nonlinear term without any monotone requirement .The solutions of fractional difference equation are the size of tumor in model tumor growth described by the Gompertz f...
متن کامل